Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway.

نویسندگان

  • J W Tsai
  • M R Alley
چکیده

Proteolysis is involved in cell differentiation and the progression through the cell cycle in Caulobacter crescentus. We have constitutively expressed the transmembrane chemoreceptor McpA from a multicopy plasmid to demonstrate that McpA degradation is modulated during the cell cycle. The level of McpA protein starts to decrease only when the swarmer cells differentiate into stalked cells. The reduction in McpA protein levels is maintained until the stalked cells develop into predivisional cells, at which point the level returns to that observed in swarmer cells. The cell-cycle-regulated degradation of McpA does not require the last 12 C-terminal amino acids, but it does require three amino acids (AAL) located 15 residues away from the C terminus. The ClpXP protease is essential in C. crescentus for viability, and thus, we tested McpA degradation in xylose conditional mutants. The effect on McpA degradation occurred within two generations from the start of ClpX depletion. The conditional mutants' growth rate was only slightly affected, suggesting that ClpX is directly involved in McpA proteolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degradation of a Caulobacter soluble cytoplasmic chemoreceptor is ClpX dependent.

In order to determine whether ClpXP-mediated proteolysis is a common mechanism used to regulate the chemotaxis machinery during the cell cycle of Caulobacter crescentus, we have characterized a soluble cytoplasmic chemoreceptor, McpB. The mcpB gene lies adjacent to the major chemotaxis operon, which encodes 12 chemotaxis proteins, including the membrane chemoreceptor McpA. Like McpA, McpB posse...

متن کامل

Proteolysis of the McpA chemoreceptor does not require the Caulobacter major chemotaxis operon.

The degradation of the McpA chemoreceptor in Caulobacter crescentus accompanies the swarmer cell to the stalked-cell differentiation event. To further analyze the requirements for its degradation, we have constructed a series of strains that have deletions in the mcpA gene and in the mcpA chemotaxis operon. Internal deletions of the mcpA gene demonstrate that the highly conserved domain (signal...

متن کامل

A Dynamically Localized Protease Complex and a Polar Specificity Factor Control a Cell Cycle Master Regulator

Regulated proteolysis is essential for cell cycle progression in both prokaryotes and eukaryotes. We show here that the ClpXP protease, responsible for the degradation of multiple bacterial proteins, is dynamically localized to specific cellular positions in Caulobacter where it degrades colocalized proteins. The CtrA cell cycle master regulator, that must be cleared from the Caulobacter cell t...

متن کامل

An essential protease involved in bacterial cell-cycle control.

Proteolytic inactivation of key regulatory proteins is essential in eukaryotic cell-cycle control. We have identified a protease in the eubacterium Caulobacter crescentus that is indispensable for viability and cell-cycle progression, indicating that proteolysis is also involved in controlling the bacterial cell cycle. Mutants of Caulobacter that lack the ATP-dependent serine protease ClpXP are...

متن کامل

New members of the ctrA regulon: the major chemotaxis operon in Caulobacter is CtrA dependent.

The Caulobacter crescentus che promoter region consists of two divergent promoters, directing expression of the major chemotaxis operon and a novel gene cagA (chemotaxis associated gene A). Analyses of start sites by primer extension and alignment of the divergent promoters revealed significant similarities between them at the -35 promoter region. Both mcpA and cagA are differentially expressed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 183 17  شماره 

صفحات  -

تاریخ انتشار 2001